Deep Marching Cubes: Learning Explicit Surface Representations

نویسندگان

  • Yiyi Liao
  • Simon Donné
  • Andreas Geiger
چکیده

Existing learning based solutions to 3D surface prediction cannot be trained end-to-end as they operate on intermediate representations (e.g., TSDF) from which 3D surface meshes must be extracted in a post-processing step (e.g., via the marching cubes algorithm). In this paper, we investigate the problem of end-to-end 3D surface prediction. We first demonstrate that the marching cubes algorithm is not differentiable and propose an alternative differentiable formulation which we insert as a final layer into a 3D convolutional neural network. We further propose a set of loss functions which allow for training our model with sparse point supervision. Our experiments demonstrate that the model allows for predicting sub-voxel accurate 3D shapes of arbitrary topology. Additionally, it learns to complete shapes and to separate an object’s inside from its outside even in the presence of sparse and incomplete ground truth. We investigate the benefits of our approach on the task of inferring shapes from 3D point clouds. Our model is flexible and can be combined with a variety of shape encoder and shape inference techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending Marching Cubes with Adaptative Methods to Obtain More Accurate Iso-surfaces

This work proposes an extension of the Marching Cubes algorithm, where the goal is to represent implicit functions with higher accuracy using the same grid size. The proposed algorithm displaces the vertices of the cubes iteratively until the stop condition is achieved. After each iteration, the difference between the implicit and the explicit representations is reduced, and when the algorithm ...

متن کامل

Adaptative Cubical Grid for Isosurface Extraction

This work proposes a variation on the Marching Cubes algorithm, where the goal is to represent implicit functions with higher resolution and better graphical quality using the same grid size. The proposed algorithm displaces the vertices of the cubes iteratively until the stop condition is achieved. After each iteration, the difference between the implicit and the explicit representations are r...

متن کامل

Realistic and interactive simulation of rivers

In this paper we present interactive techniques for physics-based simulation and realistic rendering of rivers using Smoothed Particle Hydrodynamics. We describe the design and implementation of a grid-less data structure to efficiently determine particles in close proximity and to resolve particle collisions. Based on this data structure, an efficient method to extract and display the fluid fr...

متن کامل

Parallel Multipipe Rendering for Very Large Isosurface Visualization

In exploratory scientiic visualization, isosurfaces are typically created with an explicit polygonal representation for the surface using a technique such as Marching Cubes. For even moderate data sets, Marching Cubes can generate an extraordinary number of polygons , which take time to construct and to render. To address the rendering bottleneck, we have developed a multipipe strategy for para...

متن کامل

Converting CSG models into Meshed B-Rep Models Using Euler Operators and Propagation Based Marching Cubes

The purpose of this work is to define a new algorithm for converting a CSG representation into a B-Rep representation. Usually this conversion is done determining the union, intersection or difference from two B-Rep represented solids. Due to the lack of explicit representation of surface boundaries, CSG models must be converted into B-Rep solid models when a description based on polygonal mesh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018